Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms.

نویسندگان

  • Shizue Yoshihara
  • Mitsunori Katayama
  • Xiaoxing Geng
  • Masahiko Ikeuchi
چکیده

The gene, pixJ1 (formerly pisJ1), is predicted to encode a phytochrome-like photoreceptor that is essential for positive phototaxis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The PixJ1 protein was overexpressed as a fusion with a poly-histidine tag (His-PixJ1) and isolated from Synechocystis cells. A zinc-fluorescence assay suggested that a linear tetrapyrrole was covalently attached to the His-PixJ1 protein as a chromophore. His-PixJ1 showed novel photoreversible conversion between a blue light-absorbing form (Pb, lambdaAmax=425-435 nm) and a green light-absorbing form (Pg, lambdaAmax=535 nm). Dark incubation led Pg to revert to Pb, indicative of stability of the Pb form in darkness. Red or far-red light irradiation, which is effective for photochemical conversion of the known phytochromes, produced no change in the spectra of Pb and Pg forms. Site-directed mutagenesis revealed that a Cys-His motif in the second GAF domain of PixJ1 is responsible for binding of the chromophore. Possible chromophore species are discussed with regard to the novel photoconversion spectrum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.

Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead ph...

متن کامل

Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924.

Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a cons...

متن کامل

Temperature Effects on Agrobacterium Phytochrome Agp1

Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity ...

متن کامل

Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.

Cyanobacteriochromes (CBCRs) are cyanobacterial members of the phytochrome superfamily of photosensors. Like phytochromes, CBCRs convert between two photostates by photoisomerization of a covalently bound linear tetrapyrrole (bilin) chromophore. Although phytochromes are red/far-red sensors, CBCRs exhibit diverse photocycles spanning the visible spectrum and the near-UV (330-680 nm). Two CBCR s...

متن کامل

Phytochrome structure and signaling mechanisms.

Phytochromes are a widespread family of red/far-red responsive photoreceptors first discovered in plants, where they constitute one of the three main classes of photomorphogenesis regulators. All phytochromes utilize covalently attached bilin chromophores that enable photoconversion between red-absorbing (P(r)) and far-red-absorbing (P(fr)) forms. Phytochromes are thus photoswitchable photosens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 45 12  شماره 

صفحات  -

تاریخ انتشار 2004